On 3-adic Valuations of Generalized Harmonic Numbers

نویسنده

  • Ken Kamano
چکیده

We investigate 3-adic valuations of generalized harmonic numbers H n . These valuations are completely determined by the 3-adic expansion of n. Moreover, we also give 3-adic valuations of generalized alternating harmonic numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

J ul 2 00 6 ON THE ANALOGS OF EULER NUMBERS AND POLYNOMIALS ASSOCIATED WITH

Abstract. The purpose of this paper is to construct of λ-Euler numbers and polynomials by using fermionic expression of p-adic q-integral at q = −1. From these λ-Euler polynomials, we derive the harmonic sums of higher order. Finally, we investigate several interesting properties and relationships involving the classical as well as the generalized Euler numbers and polynomials. As an applicatio...

متن کامل

The 2-adic Valuation of Stirling Numbers

We analyze properties of the 2-adic valuations of S(n, k), the Stirling numbers of the second kind. A conjecture that describes patterns of these valuations for fixed k and n modulo powers of 2 is presented. The conjecture is established for k = 5.

متن کامل

ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS

The purpose of this paper is to define generalized twisted q-Bernoulli numbers by using padic q-integrals. Furthermore, we construct a q-analogue of the p-adic generalized twisted L-functions which interpolate generalized twisted q-Bernoulli numbers. This is the generalization of Kim’s h-extension of p-adic q-L-function which was constructed in [5] and is a partial answer for the open question ...

متن کامل

Wavelet analysis as a p – adic harmonic analysis

Wavelet analysis as a p–adic harmonic analysis Abstract New orthonormal basis of eigenfunctions for the Vladimirov operator of p–adic fractional derivation is constructed. The map of p–adic numbers onto real numbers is considered. This map (for p = 2) provides an equivalence between the constructed basis of eigenfunctions of the Vladimirov operator and the wavelet basis in L 2 (R) generated fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011